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The behavior of small perturbations In a plane-parallel antlaymmetrlc steady 
flow with cubic velocity profile Is Investigated. Such a flow originates in 
a viscous fluid enclosed between vertical parallel planes heated to different 
temperatures Cl]. The termal perturbations may be neglected In the limiting 
case of low Prandtl numbers, and the stability problem becomes purely hydro- 
dynamic. The presence of an lnflectlon point In the profile of the fundamen- 
tal flow results In instability of the flow In the lnviscld approximation 
r23. The numerical solution of the Orr-Sonxnerfeld equation for the pertur- 
bations of the considered flow, whose numerical results ard presented herein, 
dlacloses a monotonoue lnetablllty In the vl8cous flow, which sets In at com- 
paratively low values of the Reynolds number R . 

Results of a computation of the spectrum of the normal perturbations 
decrements In the 0 - 1500 range of the numbers aR for various values of 
the wave number a and a neutral curve of the monotonoue Instability are 
presented herein. The atream functlona for the monotonous perturbations 
which grows with time and for the damped vibrational perturbation are found 
for the values a = 1 and R - 1000 . 

1. Let UB consider the stability of the plane-parallel flow of a viscous 
lncompreaslble fluid between the planes x - f h . Let 

FzdJo[;- - (;)“I 

be the velocity proflle of the fundamental flow; x Is the coordinate along 
the flow. Such motion occur8 In a homogeneous fluid subject to a ma88 force 
dependent linearly on the x coordinate and Independent of x . If U, , h 
atad ha/y (V le the kinematic vlecoelty) are taken a8 the units of measure- 
ment of the velocity, distance and time, respectively, and the stream func- 
tion of a small normal perturbation Is written ae 

Y (2, z,t) = cp (z) exp (- At+ iaz) 

(where a 1s the real wave number, A .the complex perturbation decrement), 
we then obtain the Orr-Sonnnerfeld equation for the perturbation amplitude 

9 
IV -%kp"+a4cp==iaR [(U-+)(q'-a%p)- U'q] (1.1) 
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with the boundary conditions 

V = cp '=O for z=fi (1.2) 

We will solve the boundary value problem (1.1),(1.2) by the Galerkin 
method. Let us put 

cp (4 ==wf+l to) -I- Clip1 to) ‘+ . . . _t “ivcpiy(o) V-3) 

Let us take the complete system of amplitudes of the normal pePtUI+atiOnS 

In a fluid at rest as the system of basis functions cp(e) - these functions 
and the correspon&ing decrements h(c) are presented in *C 3j (*). The stan- 
dard procedure of the method leads t"o a system of homogeneous algebraic equa- 
tions fur the coefficients of the expansion (1.3) 

Because of the oddness of the velocity profile of the fundamental flow, 
the matrix elements H,, differ from zero only for subscripts of different 
evenness and for even R equal 

A,, UtanhU - Bm,, 01 cot U + Cm,] (L5) 

h (0) 

In E 4 faa -3h, 1 
(o) (a” f utanha - &anhz U - h,(o)) 

B rnn= 

2QL44a' 1 1 -t- 4yPh,[o)-3;.,(O))*~)+h,(*)*_22h,(0)* 

h w + 4% + k (0) 

(m = 1, 3, 5, . 0 .; n = 0, 2,4,. * .) 

For odd R the matrfx elements are obtained from (1.5) by replacing all 
tanh Q; and coth c by coth o and tan a , respectively. 

For large values of the number A the solution of the boundary value 
problem (1.1) and (1.2) may be complex. Hence, to find the approximate 
solution (1.3) It Is necessary to take a large number of basic functions. 
The maximum number of basic functions utilized In thls computatlcn is 18. 
!Chls would permit finding the dependence of the 11 lower levels of the 
spectrum on aR wlth sufficient accuracy in the O<aR~1500 range.The 
convergence of the method was estimated by a comparison of the results of 
approximations contalnlng 14, 16, 17 and 18 basic functions for the wave 
number Q - 1 . Approximations with 16 to 18 functions practically coin- 
cide in the range mentioned. 

By a unitary transformation the matrix of coefficients of the system (1.4) 
may be reduced to real form. Then the problem of finding the decrements X 
reduces to finding the elgenvalues of a real (N + l)-th order matrix 

(iL fO$/+--l)"uRH n mn f 

*I Petrov [II] first applied the basls utlllzed to the Investigation of 
hydrodynamic stability problems. 
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for fix;?d a and ‘R . The elgenvalues and eigenvectors of this matrix were 
found by an orthogonal powers method [5]. All the computations were per- 
for-d on the “Aragata” electronic computer in Perm’ University. 

0. Let us consider the spectrum of the normal perturbation decrements. 
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Fig. 3 
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Fig. 4 

The real part of, the decrement - aci is pictured In Fig.la as a function of 
the number @??)I* for a - 0.5 . Fig.lbyields the dependence of the square 
of the perturbation phase 
flow velocity on .(&$J’.n 

VelOcltY, measured In units of the fundamental 
Pig.2 refers to perturbations with wave number 
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unity, The portions of the curves which are dashed in this figure correspond 
to tint range of rrR numbers where the l&function approximation differes 

quantitatively from the 160Sunctlon approxlmatlon. 

'X lR\--T1 
Ffgs.3 and 4 yield the dependence of the decrement% 
on the Reynolds number for Q I 2, 8, respectively. 

fn conformity with the general considerations [3], 
the perturbation decrement% at low Reynolds number% 
are real. A% la Been from Pigs.1 to 3, the lower 
decrement intersects the UR axis and change8 sign. 
This mean8 that, Zn contrast to Couette flow a mono- 
tonoua lnstabllity occurs in a flow with cubic pro- 
fitle. It originates at compaatlvely low Reynolds 
number% s The neutral monotonous lnstablllty curve 
is pictured In Fig.5. The least critical value R. 
yielding the beginning of th@ lnetablllty, is 83 
and 1% reached f'or a,,= 1.3 . The mode of fluid 

0 f a* 2 motion given by this perturbation is of epeolflc 

Fig. 5 
character and is discussed below; the given ;t;gXi- 
llty may be called the instability of the 
of opposite rlowa" The flow considered In ic‘ 6f also 
possesses an analogoue kind of instability. Let UB 

note that the instability of the cubic profile with respect to monotonous 
perturbation% is disclosed in an approximation with two functions [7] (*). 

X 

4 .oo 
-0.95 
-0.90 
-0.85 

L;‘;; 
-0: 70 
-0.65 
-0.m 
-0.55 
-0.50 

q (x) 

0.000 0.000 
0.104 -0.208 
0.396 -0.721 
0.827 -1.325 
1.339 -1.875 
1.881 -2.334 
2.418 -2.707 
2.923 -2.987 
3.385 -3.167 
3.800 -3.261 
4.166 -3.285 

5 

-0.50 
-0.45 
-0.40 
-0.35 
-0.36) 
-0.25 
-0.20 
-0.15 
-0.10 
-0.05 
-0.00 

4.166 
4.482 
4.768 
4.963 
5.230 
5.w4 
5.337 
5.387 
5.413 
5.425 
5.429 

Table 1 

-3.285 

r”,*ffg 
-2: 908 
-2.652 

-%“z 
A:516 
--1 i 04i 
-0.532 

0.000 

A% the Reynolds number increases In flows with an odd Velocity profile, 
palswise merger of the real decrement% occur% with the formation oi 8 cam- 
plex conjugate pair. TM% mean8 that two monotonous perturbations transform 
into two vibrational perturbation% with the same damping velocity, travelllng 
In opposite Ulrectlons. The vlbratianal perturbations start to appear $t 
a?? numbers of about 100. Hence, for all the known levels of the perturba- 
tion spectrum of plane-parallel Couette flow CS], their real part starts to 
increase after the merger of the two real decrements, i.e. the etabllity 
relative to vibrational perturbatiotie rlsea as the Reynolds nu@er inareases. 
There is a complex decrement in .the flow under investigation whose real part 
diminishes a% fl increases (thk 10-U level for a - 0.5, and 9-10 tar 
a-1 and 2). Extrapolat+on of the real part of this decrement to zero 
lead% to the eetlmate R,- Id . A value of the m&am order is obtained it' 
one of the opposite streams or the flow with a aubic profile Is aompared with 
Poiseuille Plow and the appropriate reoaloulation 1% made. To oaloulate the 
crltlaal Reynolds number at whic~vlbl?ationil lmtbbility seta In (If it 
exists), It is understandably necessary to go forward into the domain of 
higher Reynolds number% in the eomputatfon by takkq a greater numbar of 
basis Bxmtlonn, or by using an asymptotio method. 

l )~aloulatlons with two functions yield Re- 69 , ue= 1.6 . Extrapolation 
by mbane of square oorractlons to the decrementa at A - 0 (we 131) lead6 
to the values Rfl 50, a,,~ 1.5 
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3. Let us now consider the perturbation mode of the investigated flow. 
The amplitude Fur&Ion m(r) of & monotonously increasing perturbation was 
calculated for developed motion with the parameters: Q'l, R - 1000 , 
x= - 101.7 . The numerical values of' the 
Table 1 the real part of the amplitude 

t 

am litudes are presented in 

part q, x) an odd function of x ). 
m,(x P is an even, and the imaginary 

To investigate the mode of the motion 
In the perturbations, a perturbation streamline may be constructed 

The perturbation has the form of fixed fL.- Of cells with motion that is 
symmetric relatlve to the center of the ceil'(Flg.6). As is seen from the 
Figure, the Perturbation Penetrates identically into both halves of the 
fundamental flow. The addition of this perturbation to the fundamental flow 
makes the wavy interface between the two opposing flows, i.e. the violation 
of stability is associated with the instability of the plane interface of 
the Flows relative to small perturbations, 

The vibrational perturbations are of essentially different nature. For 
example, let us consider the perturbation correspanding to h 10 with the 
wave number 0 - 1 for 0.P 9 1000 and or> 0 . Numerical va 1~9 of the P' 
amplitude function for this aerturbatlon are presented in Table 2. The per- 
turbation moves along the r-axis with velocity 0.159 units of the fundamental 
slow velocity, and Its amplitude dlminishea with time. The velocity distri- 
button in the perturbation Is seen In Fig.7, in which the perturbation stream- 
lines at t -0 are pictured. Thz perturbation is almost completely local- 
lzed in the domain of positive x , i.e. in that part of the flow where the 
dlirection of propagation of the perturbation agrees with the direction of the 
velocity of the fundamental motion. The magnitude of the perturbation velo- 
city In th3.s part of the flaw is an order of magnitude great,er than the 
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perturbation veloclt 
con3uete decrement T 

In the opposing flow, 

domain. 
negative phase velocity) 

The perturbation with complex- 
Is localized In the -l<x< 0 

The amplitude of this perturbation ‘(x) is obtained from Table 2 
by replacIng ep, fx) by rpi t-x) as well aa cpr X) by @,(-AZ) . ‘p 

x x 

-2 .oo 0.20 
-0.90 0.22 
-0.80 0.25 
-0.70 0.30 
-0.6!, 0.35 
-0.50 0.40 
--0.40 0.45 
-0.30 0.50 
-0.25 0.55 
-0.20 0.60 
-0.25 0.65 
-0. II) ti.70 
--_I) * 05 0.80 
0.00 0.85 
0.05 0.91) 
0.10 0.95 
0.15 1.00 

As is known, the nonzero phase velocity of the neutral perturbation makes 
isolated points at which the velocity of the fundamental motion equals the 
velocity of the perturbation. 
lized around these points. 

A perturbation separating the streams Is loca- 
The generation of one such layer (a sharp peak 

in the stream function around the points x I 0.2 , t 1-0.2) can be seen In 
Fig .7 t This makes plausible the assumption expressed above on the existence 
of a vibrational Instability of the same nature as a Poiseullle flow lnsta- 
billty In the flow under consideration. A final deduction of the presence 
of this IAatabZllty may be made after an additional lnvestlgatlon. 

0.000 
0.291 
0.2% 
0.248 
0.296 
0.400 
0.473 
0.637 
0,915 
1.258 
1.311 
0,660 

-0.667 
--1.319 
-0.224 
3.069 
7.152 

l!.Ooo 
0.303 
0.877 
1.308 
1.654 
1.914 
2.089 
2.379 
2.480 
2.290 
1.729 
1.224 
,I.634 
3.487 
6.100 
7.655 
6.556 

9.732 
9.974 
9.455 
6.9;36 
4.071 
2.444 
2.334 
2.958 
3.415 

$.;;; 

2:665 
1.955 
1.361 
0.699 
0.189 
O.OOU 

2.897 
t.liE 

--1.415 
--rt.lSl 
-J&.432, 
---:5.li~I 
--1.714 
-1.198 
--z ,538 
-2 * 143 
-2.426 
-2.lOlt 
AJ.28;: 
0,355 
0.433 
0.166 
0.000 

Table 2 
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