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The behavior of small perturbations in a plane=-parallel antisymmetric steady
flow with cubic velocity profile is ilnvestigated, Such a flow originates in
a viscous fluild enclosed between vertical parallel planes heated to different
temperatures [1]. The termal perturbations may be neglected in the limiting
case of low Prandtl numbers, and the stability problem becomes purely hydro-
dynamic. The presence of an inflection point in the profile of the fundamen-
tal flow results in instabllity of the flow in the 1lnviscid approximation
[2]. The numerical solution of the Orr-Sommerfeld equation for the pertur-
bations of the considered flow, whose numerical results ard presented herein,
discloses a monotonous instabllity in the viscous flow, which sets in at com-
paratively low values of the Reynolds number &

Results of a computation of the spectrum of the normal perturbations
decrements in the O - 1500 range of the numbers oR for various values of
the wave number o and a neutral curve of the monotonous instability are
presented herein. The stream functions for the monotonous perturbations
which grows with time and for the damped vibrational perturbation are found
for the values g = 1 and A& = 1000 .

1, Let us consider the stability of the plane-parallel flow of a viscous
incompressible fluid between the planes x = + b . Let

i - )]

be the velocity profile of the fundamental flow; a 1s the coordinate along
the flow. Such motion occurs in a homogenenus fluid subject to a mass force
dependent linearly on the x coordinate and independent of =2 . If U, , h
and A*/v (v 1s the kinematic viscosity) are taken as the units of measure-
ment of the veloclty, distance and time, respectively, and the stream func-
tion of a small normal perturbation is written as

¥ (z, z,8) = ¢ (z) exp (— A -+ ioz)

(where o 1s the real wave number, X ‘the complex perturbation decrement),
we then obtain the Orr-Sommerfeld equation for the perturbation amplitude

o(x) .
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with the boundary conditions

p=¢" =0 for =41 (1.2)
We will solve the boundary value problem {1.1),(1.2) by the Galerkin
method. Iet us put . .
¢ @) =cope’” + @ o ey (1.3)

Let us take the complete system of amplitudes of the normal perturbations
in a fluld at rest as the system of basis functions gpg” ; these functions
and the corresponding decrements A\ are presented in "[3] (*). The stan-
dard procedure of the method leads to a system of homogeneous algebraic equa-~
tions for the coefficients of the expansion {1.3)

N .
. : ’ 1.4
21 S {ihy, — )“n(n)) Spn + il } =0 (n=0,1,2,..., N) (1.4
n=0
Because of the oddness of the velocity profile of the fundamental flow,

the matrix elements AX,, differ from zero only for subscripts of different
evenness and for even n egqual

e = 73;: {4,,, atanhot — B, o cot o C, | {1.5)
7“11(0)
I, = m— (&? - atanhe, — a%ant? & ~— A, (0))
B OO
N hot T 3 10) (W0, (e
2,9 —4ar 1 4arA O 3p (O 0 g g (0 g (OF
R YO R TP WE (= 3,2
c - ;bm(o) (}‘m(o) — 3Ln(0)) N ho? N _5; N __i___ B
mn 3 (xn(fl) - Am(ﬂ) 2 An(O)’ 4o A m(o)

AL 9y, Oy (O 7y (O (O 4 gqap (0 5, 00 3 (0))
(A'n(o) — Lm(O)y
(m=1,3,5...n=10/2,4,...)

For odd n the matrix elements are obtained from (1.5) by replacing all
tanh ¢ and coth g by coth g and tan a , respectively.

For large values of the number & the solution of the boundary value
problem (1.1) and (1.2) may be complex. Hence, to find the approximate
solution (1.3) 1t is necessary to take a large number of basic functions.
The maximum number of basic functions utilized in thils computation is 18.
This would permit finding the dependence of the 11 lower levels of the
spectrum on of with sufficient accuracy in the O < aR < 1500 range. The
convergence of the method was estimated by a comparison of the results of
approximations containing 14, 16, 17 and 18 baslc functions for the wave
number g = 1 . Approximations with 16 to 18 functions practically coin-
cide in the range mentioned.

By a unitary transformation the matrix of coefficlents of the system (1.4)
may be reduced to real form. Then the problem of finding the decrements X\
reduces to finding the eigenvalues of a real (¥ + 1)-th order matrix

(a8, — (—1)*aRH, )

%) Petrov [4] first applied the basis utilized to the investigation of
hydrodynamic stability problems.
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for fixed a and R . The eigenvalues and eigenvectors of this matrix were
found by an orghogonalupowers method [5]. All the computatlions were per-
formed on the "Aragats” electronic computer in Perm' University.

2. Let us consider the spectrum of the normal perturbation decrements.
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The real part of the decrement — ac, 1s pictured in Fig.la as & function of
the number (aR) /s for a = 0.5 . Fig.1b ylelds the dependence of the square
of the perturbation phase velocity, measured in unlts of the fundamental
flow velocity on '(d.R)"/’.* Fig.2 refers to perturbations with wave number
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unity, The portions of the curves which are dashed in this figure correspond
to that range of aR numbers where the 18-function approximation differes
quantitatively from the 16-function approximation.
190 Figs.3 and 4 yield the dependence of the decrements
R on the Reynolds number for a = 2, 4, respectively.

In conformity with the general considerations [3],
the perturbation decrements at low Reynolda numbers
are real. As is seen from Pigs.l to 3, the lower

‘ decrement intersects the aoR axis and changes sign.
100 \ . This means that, in contrast to Couette flow, a mono-

tonous instability occurs in a flow with cuble pro-
‘ file. It originates at comparatively low Reynolds
. numbers. The neutral monotonous instability curve
Apt———— ' is pictured in Fig.5. The least critical value R,
| f yielding the beginning of the instability, is 83

70 o and is reached for g,= 1.3 . The mode of fluid
0 X »  motion given by this perturbation is of specific
* = character and is discussed below; the given instabl-
Fig. 5 1ity may be called the instadility of the i.[xterface
of opposite flows, The flow considered in L 6] alsoc

possesses an analogous kind of instability. Let us
note that the instability of the cubic profile with respect to monotonous
perturbations 1s disclosed in an approximation with two functions [7] (*).

Table 1
x ¢r (x) 1 {x) x @p (X) @; {x}
—1.00 0.000 0.000 —0.50 4,166 —3.285
—0.95 0.104 —0.208 —0.45 4.482 —3.234
—0.90 0.396 —0.721 —0.40 4.748 —3.105
—0.85 0.827 —1.325 —0.35 4,963 —2.908
—0.80 1.339 —1.875 —0.30 5.130 —2.652
—0.75 1.881 —2.334 —0.25 5.254 —2,334
—0.70 2.418 —2.707 —0.20 5.337 —1.952
—0.65 2.923 —2.987 —0.15 5.387 —1.516
—0.60 3.385 —3.167 —0.10 5.413 —1.044
—0.55 3.800 —3.261 —0.05 5.425 —0.532
—0.50 4.166 —3.285 —0.00 5.429 0.000

As the Reynolds number increases in flows with an odd veloclty profile,
pairwise merger of the real decrements occurs with the formation of a com-
plex conjugate pair. This means that two monotonous perturbations transform
into two vibrational perturbations with the same damping velocity, travelling
in opposite directions. The vibrational perturbations start to appear gt
afF numbers of about 100, Hence, for all the known levels of the perturba-
tion spectrum of plane-parallel Couette flow [8], their real part starts to
increase after the merger of the two real decrements, 1.e. the stability
relative to vibrational perturbations rises as the Reynolds number increases.
There 18 a complex decrement in the flow under investigation whoae real part
diminishes as gaf increases {(the 10-11 level for a = 0.5, and 9-10C for
a =1 and 2). Extrapolation of the real part of this decrement to zero
leads to the estimate R,~ 10* . A value of the same order 1s obtalned if
one of the opposite streams of the flow with a cublc profile 1s compared with
Poiseuille flow and the appropriate recalculation is made. To calculate the
eritical Reynolds number at which, vibrational instability sets in (1r 1t
exists), it is understandably nesessary to go forward into the domain of
higher Reynolds numbers in the computation by taking a greater number of
basis functions, or by using an asymptotic method.

#) Caloulations with two functions yleld R,= 69 , as= 1.6 . Extrapolation
by means of square corrections to the decrements at 2 = O (see [3]) leads
to the values RAge 50, aum 1.5
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3. Let us now conslder the perturbation mode of the investigated flow.
The amplitude functlion of{x) of a monotonously increasing perturbation was
calculated for developed motlion with the parameters: g = 1 , R = 1000 ,

A = — 101.7 . The numerical values of the amplitudes are presented in
Table 1 gthe real part of the amplitude o, (x) 1s an even, and the imaginary

part @, (x) an odd function of x )J. To investigate the mode of the motion
in the perturbations, a perturbation streamline may be constructed
. At o ht
Re ¥ = [q, cos {2z — A1) — @; sin{az — At)] e r==const e

The perturbation has the form of fixed {A,= 0) cells with motion that is
symmetric relative to the center of the cell (Pig.6). As is seen from the
figure, the perturbation penetrates identically into both halves of the
fundamental {low. The addition of this perturbation to the fundamental flow
makes the wavy interface between the two opposing flows, i.,e, the violation
of stabllity is assoclated with the instability of the plane interface of
the flows relative to small perturbations.

2
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Fig. © Fig. 7

The vibrational perturbations are of essentially different nature. For
example, let us consider the perturbation corresponding to A,, 10 With the
wave number g = 1 for gF = 1000 and go,> 0 . Numerical vaiues of the
amplitude function for this perturbation are presented in Table 2. The per-~
turbation moves along the z-axlis with velocity 0.159 units of the fundamental
flow veloeity, and 1ts ampllitude diminishes with time. The velocity distri-
bution in the perturbation is seen in ¥ig.7, in which the perturbation stream-
lines at ¢ =0 are pictured. Th= perturbation is almost completely local-
ized in the domain of positive x , 1.e. in that part of the flow where the
direction of propagation of the perturbation agrees with the direction of the
veloeity of the fundamental motion. The magnitude of the perturbation velo-
clty in this part of the flow is an order of magnhitude greater than the
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perturbation velocity in the opposing flow, The perturbation with complex-
conjugate decrement {hegative phase velocity) is localized in the —1<x< 0
domain, The amplitude of this perturbation w{(x) is obtained from Table 2
by replacing g, (x) by o, (~x) as well as o, {(x) by % (-x) .

Table 2
x o (x) %; () x ; e () @ (v
—1.00 0.000 1,000 0.20 9,732 2.897
—0.90 0.191 0,303 0.22 9.974 1111
—0.80 0.254 0.877 0.25 9.455 —1.416
—0.70 0.248 1.308 0.30 6.9:36 —4.151
(), 60 0.296 1.654 0.35 4,071 —h4.432
—0.50 0.400 1.914 0.40 2,444 —3.110
—0.40 0.473 2.089 0.45 2.334 —1.714
—0.30 0.637 2.379 0.50 2.958 —1.198
—0.25 0.915 2.480 0.55 3.415 —1.538
—0.20) 1.258 2.290 0.60 3.366 —2.143
—0.15 1.311 1.729 0.65 3.017 —2.426
—0.10 0.660 1.224 (.70 2.665 —2.10%
—0.05 | —0.667 1.634 0.80 1.955 —0.283
0.00 | —1.319 3.487 0.85 1.361 0.355
0.05 | —0.22% 6.100 0.90 0.699 0.433
0.10 3.069 7.655 0.95 0.189 0.166
0.15 7.152 6.556 1.00 0.000 0.000

As 1s lmown, the nonzero phase velocity of the neutral perturbation makes
1solated points at which the velocity of the fundamental motion equals the
velocity of the perturbation. A perturbation separating the streams is loca-
1ized around these points. The generation of one such layer {a sharp peak
in the stream function around the points x = 0.2 , z =—0.2) can be seen in
Fig.T. This makes plausible the assumption expressed above on the existence
of a vibrational instability of the same nature as a Polseuille flow insta-
bility in the flow under consideration. A final deduction of the presence
of this instability may be made after an additional investigation.

This research was performed under the supervision of E.M. Zhukhovitskii,
to whom the author 1s extremely grateful. The author 1s also grateful to
¢.Z. Gershuni for his constant interest in the research and for useful com-
ments.
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